

Earth Science Enterprise Technology Planning Workshop

Large, Lightweight Deployable Antennas

Co-Chairs:

Dan Schaubert, U Mass Ramesh Kakar, NASA HQ

Facilitator: Michael Lou, JPL

23-24 January 2001

Breakout Session Attendees

Anders, Roland - Northrop

Bekey, Ivan - Bekey Designs

Bobcyk, Wayne - Ball

Brown, Mike - NRL

Bukulic, Bob - APL

Chase, Peter - TRW/Astro

Cosmo, Mario - SAO

Cravey, Robin - NASA/LaRC

Dobson, Craig - U Mich

Doiran, Terence - NASA/GSFC

Edelstein, Wendy - JPL

Entekhabi, Dara - MIT

Farley, Rodger - NASA/GSFC

Fujita, Tosh - JPL

Garza, Mario - Orbital

Gierow, Paul - SRS Tech

Grahne, Mark - ILC Dover

Higashi, Bob - Honeywell

Im, Eastwood - JPL

Jackson, Tom - USDA

Kajii, Makoto - NASDA

Kakar, Ramesh - NASA HQ

Lou, Michael - JPL

Marks, Geoff - TRW/Astro

Neeck, Steve - NASA/GSFC

Njoku, Eni - JPL

Ramat-Samii, Yahya - UCLA

Reed, Bill - TRW

Roler, Max - Sverdrup

Rosen, Paul - JPL

Ruebsamen, Dale - Honeywell

Ruf, Chris - U Mich

Schaubert, Dan - U Mass

Schulze, Ron - JHU/APL

Showen, Robert - Raytheon/Ames

Swift, Cal - U Mass

Talley, Michael - NASA/LaRC

Tupper, Michael - CTD

Walter, Steven - Aerojet

Willey, Cliff - JHU/APL

Williams, Liz - NASA HQ

Woods-Vedeler, Jessica - NASA/LaRC

Yueh, Simon - JPL

Requirements for Large, Lightweight Deployable Antennas: Planar Arrays

Science / Measurement

- Soil Moisture Radiometer
 - 10 km horizontal resolution
 - 1 to 3 day revisit time
- GEO Atmospheric Sounder
 - 60 GHz Temperature Channel
 - 183 GHz Water Vapor Channel
 - 50 km horizontal resolution
- Topography/Hazards SAR
 - 10-30 m horizontal resolution
 - 8 day revisit time
- Biomass/Freeze/Thaw SAR
 - 0.1 to 1 km horizontal resolution
- Precipitation Radiometer
 - 3 hour revisit time
 - Constellation
- Subsurface Probing
 - 50-200 MMz

Missions Enabled/Enhanced

- EX4 A Soil Moisture Mission
- GEO Sounder Mission
- EOS Hazards Mission
- EX ?: Freeze/Thaw Mission

Description of Technology

- Soil Moisture Radiometer
 - 20 x 20 m flat panel array antenna
- GEO Atmospheric Sounder
 - 5 x 5 m flat panel array antenna
- Topography/Hazards SAR
 - 3 x 10 m flat panel array antenna
- Biomass/Freeze/Thaw SAR
 - 3 x 10 m flat panel array antenna
- Precipitation Radiometer
 - 3 x 3 m flat panel array antenna

Illustration of Technology

State of the Art for Large, Lightweight Deployable Antennas: Planar Arrays

State of the Art for the Technology

- 10 x 3 m mechanically-deployed SAR Antenna (TRL9 - STRM)
- Inflatable Deployable SAR Antenna
 - Lab Demo (TRL4)
 - 3x1 m Inflatable Array
 - 0.5 to 1 mm flatness
 - Engineering Model (TRL 3)
 - 3 x 5 m Single-Wing Inflatable Array

Illustration of State of the Art

3.3m x 1m L-band Inflatable SAR radar array

Major Technology Elements and TRL

- Lightweight Space Deployable Structure
 - NGST sun shade (TRL 3 4)
 - active control of structure (TRL 4)
- Membrane
 - surface profile (TRL 4 for 1 x 3 m)
 - surface roughness (TRL 3)
 - material survivability (TRL 4)
 - handling, packaging, thermal control (TRL 3)
 - alternate materials (TRL 3-4)
- Focal Plane Compensating Arrays (TRL 3)
 - beam efficiency
 - polarization

Technology Roadmap

Requirements for Large, Lightweight Deployable Antennas: Reflector Antennas

Science / Measurement

- LEO Rain Radar
- Soil Moisture Radiometer
- GEO Rain Radar
- Ocean Salinity
- Ocean Surface Wind Vector

Missions Enabled/Enhanced

- Soil Moisture Mission
- EOS Hazards Mission
- GPM Follow-on
- EX4B Ocean Salinity

Description of Technology

Inflatable, rigidizable or mechanical structure with surface mesh or membrane

- Spin Scanned Reflector
- Spin-Scanned Feed
- Push-Broom

Illustration of Technology

Rain Radar based on a 5 x 5 m cylindrical push-broom antenna

State of the Art for Large, Lightweight Deployable Antennas: Reflector Antennas

State of the Art for the Technology

- Inflatable Deployable Dish Antenna
 - STS-77 Spartan Inflatable Dish Antenna Demo (TRL 5)
 - Inadequate surface smoothness
 - · No demonstration of rigidization
 - Attainment of design shape in space
- TRW Large Mesh Antenna
 - Space qualified 12.5m @ L-band
 - Extendable in size and frequency
 - Microwave emissivity requires evaluation

Major Technology Elements and TRL

- Lightweight Space Deployable Structures
 - Mechanically deployable structures (TRL > 4)
 - Inflatable structures (TRL 2-4)
 - Active control of structure (TRL 2)
- Membrane
 - Surface profile (TRL 4 for 1 x 3 m)
 - Surface roughness (TRL 3)
 - Material survivability (TRL 4)
 - Handling, packaging, thermal control (TRL 3)
 - Microwave emissivity requires evaluation
- Subreflector and focal plane compensation methods
- Shape and RF metrology

Illustration of State of the Art

Inflatable Antenna Experiment

- Uncontrolled deployment
- Space validation of surface accuracy not achieved

Science and Technology Drivers for Large, Lightweight Deployable Antennas

Science Element	Driving Requirements						
	Freq.	eq. Size Pol Swatch q _i C			q _i	Other	
Precipitation	≥ 10	≥ 3m	Dual Lin.	± 50°	Const.	Multiple frequenciesPointing accuracyActive and passive	
Soil Moisture	1.4	25m	Dual Lin.	± 50°		Beam Efficiency >95%Low loss < 0.3dBPointing Accuracy	Detten Smetical
Ocean Salinity	1.4	6/25m	Dual Lin.	± 50°	Const.	 Beam Efficiency > 97% (Earth <1%; Sky < 3%) Low loss < 0.3dB Pointing Accuracy 	Better Spatial Resolution And
Interferometric SAR	1.2	50m GEO	Dual Lin.	Full Disk		High PowerPointing Accuracy	More Frequent Revisits
Ocean Surface Wind Vector	13	6m	Dual Lin.	± 65°		Cross-pol < -35dBPointing Accuracy	
Microwave Sounder	> 50	6m	Lin.	Full Disk		Pointing Accuracy	
SubSurface SAR	0.05- 0.20	>25m	Dual Lin.			High Power	\downarrow
Recipitation Radar (LEO)	14/35	6m	Dual Lin.	± 37°		Match-beam at 2 frequencies	
Hurricane Monitoring Radar (LEO)	35	25m	Dual Lin.	8° Full Dis	k	Sidelobe < 30 dBCross-pol < 25 dB	
Communications	≥10	3m	СР			Pointing Accuracy	

Validation of Large, Lightweight Deployable Antennas: Planar Arrays

Description/Justification of Proposed Space Validation

- Deployment, rigidization, control and monitoring of large deployable structure
 - Validate rigidization, gas release
 - Structural accuracy and stability
 - Characterize vibration/ thermal shock
 - Validate material characterization and survivability
- RF performance
 - Validate loss, cross-pol isolation, calibration for radars
 - Validate loss, cross-pol isolation, beam efficiency and calibration for radiometers

Accommodation Requirements

- 3 x 10 m test antenna
 - Mass 150 kg (50 kg for antenna alone)
 - Volume 3.5 by 0.5 by 1 m
 - Power
 - Deployment (TBD)
 - Operations (SAR 500 Watts; Radiometer - 50 Watts)
 - Data Rate (TBD)
- Shuttle, free flyer, or space station (TBD)

Expected Benefits

- Flight needed to validate structure/thermal design tools
- Validate deployment, rigidization, and on orbit control needed to mitigate risks
- Validate RF performance
- Validate radiometer calibration

Top-Level Development and Flight Schedule

- L-band ready for flight
 - Phase A FY01
 - Phase B FY 02
 - Validation Flight FY 2004-2005
- Science mission implementation
 - As early as FY 2007

ESE-Tech-Wkshp - 8

Validation of Large, Lightweight Deployable Antennas: Reflector Antennas

Description/Justification of Proposed Space Validation

- Deployment, rigidization, control and monitoring of large deployable structure
 - Demonstrate rigidization, gas release
 - Structural accuracy and stability
 - Characterize vibration/ thermal shock
 - Demonstrate material characterization and survivability
- Pointing
 - Rotating antenna
 - Rotating feed horn
- Figure Variation vs Radius
- Radiometric performance
- Effects of outgassing and thermal loads on pointing stability
- Active Control of optics and structures

Accommodation Requirements

- Mass 150 kg
- Small stowed volume
- Surface and antenna-pattern metrology (TBD)
- Power (TBD)
 - Deployment
 - Radar
 - Radiometer

Expected Benefits

- Flight needed to validate structural/thermal performance
- Validate lightweight deployment (and rigidization)
- Validate radiometer quality (Beam efficiency, cross-polarization isolation and surface reflectivity/emissivity)
- Demonstrate on-orbit control of large, rotating space structure

Top-Level Development and Flight Schedule

- 10 m class antennas ready for flight validation
 - Phase A: FY 02
 - Phase B FY 03
 - Validation Flight FY 2005-2006
- Science mission implementation
 - As early as FY 2008

Large Deployable Antennas Benefit Multiple Earth Science Applications

Inflatable Deployable Antenna

Large Deployable Mesh Antenna

Planar Array Antenna

Soil Moisture Measurements

 25m class antennas for 10km horizontal resolution

Global Precipitation/Salinity/Ocean Wind Vector Measurements

- 5-20m class antenna for 2km horizontal resolution with wideswath scan
- Potential extension to geostationary orbits
- Potential extension to LEO constellations

Natural Hazard

- 3x10m antennas for wideswath/high SNR
- Potential extension to geostationary orbits
- Potential extension to LEO constellations

ESE-Tech-Wkshp - 10

Capability

Roadmap for Large, Lightweight Deployable Planar Arrays

Requirements:

- Science Drivers
 - Soil Moisture Radiometer
 - SARs for Topo/Hazards,
 - Biomass Freeze/Thaw
 - GEO Atmospheric Sounder

- Ocean Surface Winds
- Global Precipitation
- Sea Surface Salinity and Temperature

Technology Drivers

- Lightweight space deployable structure
- Membrane flatness, surface roughness, survivability,
- Packaging/deployment/control
- RF bandwidth, losses, calibration

Validation Flight: Validate deployment, r

Validate deployment, rigidization, control and monitoring of 3x10m inflatable antenna

- Mass 50kg for antenna
- Validate deployment, rigidization, space survivability
- Structural accuracy/stability for 1 to >10 GHz
- · Characterize vibration/thermal behavior
- Demonstrate material survivability
- Verify performance for radiometer

Science Missions:

(with large deployable planar array antenna)

- Topo/Hazards
- Precipitation
- GEO Sounder

Ground Tests

01 02 03 04 05 06 07 08 Fiscal Year

Roadmap for Large, Lightweight Deployable Reflector Arrays Requirements:

- **Science Drivers**
 - Soil Moisture and Ocean Salinity Radiometers
 - Rain Radars
 - Ocean Surface Wind Vector
- **Technology Drivers**
 - Lightweight space deployable structures
 - Membrane shape, surface roughness, survivability, packaging/deployment/control
- Microwave emissivity
- Shape and RF metrology
- Subreflector and focal plane compensation

06

(with 20-25 m class deployable reflector)

- · Sea Surface Salinity and temperature
- Soil Moisture

Subreflector

Validation Flight:

Demonstrate rigidization, control and monitoring of large inflatable antenna

- 25m diameter class antenna, 150 kg
- Shape control of antenna surface
- Measuring shape and smoothness for 1 to 100GHz
- Control of flexible structure dynamics
- Pointing accuracy/control
- Effects of out-gasing/thermal loads

Capability

Ground Tests

02

01

03

04 **Fiscal Year**

05